
I. INTRODUCTION

A distributed computing system is basically a collection of
autonomous processors or node interconnected by a
communication network in which each processor or node
has its own local memory and other peripherals, and the
communication between any two processors of the system
takes place by message passing over the communication
network to corporate a common goal. When a node fails or
when the communication subsystem which allows nodes to
communicate fails. It is often necessary to recognize the
active nodes so that they continue to perform a useful task
for their common goal. If enough nodes fails the remaining
node may decide that they just cannot perform the assigned
task and may select a new or better suited job for themselves.
After the failure occurs in a distributed computing system
the first step is to elect a coordinator node to manage the
operation. A process is used to coordinate many tasks. It is
not an issue which process is doing the task, but there
must be a coordinator that will work at any time. So electing
a coordinator or a leader is very fundamental issue in
distributed computing [1, 2, 3, 4]. And there are many
algorithms that are used in election process. Bully election
algorithm is one of them.

This works represents a modified version of bully algorithm
using a new concept Election Administration. This approach
will not only reduce redundant elections but also minimize
total number of elections and hence it will minimize message
passing, network traffic, and complexity of the existing
system. In section 2 represents original bully assumptions
and limitations. Methodology, algorithm and comparison of
our proposed work is given in section 3, 4, and 5.

II. BULLY ALGORITHM BY GARCIA-
MOLINA

Bully algorithm is one of the most famous election
Algorithms which was proposed by Garcia-Molina in 1982.
The assumptions and limitation briefly described in this
section.

A. Assumption of Bully Algorithm

This algorithm is established on some basic assumptions
which are:

(a) It is a synchronous system and it uses timeout mechanism
to keep track of coordinator failure detection.

(b) Each process has a unique number to distinguish them.

(c) Every process knows the process number of all other
processes.

(d) Processes do not know which processes are currently up
and which processes are currently down.

(e) In the election, a process with the highest process number
is elected as a coordinator which is agreed by other alive
processes.

(f) A failed process can rejoin in the system after recovery.

In this algorithm, there are three types of message and there
is an election message (inquiry) which is sent to announce
an election, an answer (OK) message is sent as response to
an election message and a coordinator victory message is
sent to announce the new coordinator among all other alive
processes.

Election Administration Algorithm for Distributed Computing

S.K. Gandhi* and Pawan Kumar Thakur*

**Department of Computer Science and Engineering, AISECT University, Bhopal, (M.P.)

(Recieved 10 June, 2012 Accepted 25 July, 2012)

ABSTRACT : An election algorithm is an algorithm for solving the coordinator election problem. Various algorithms
require a set of peer processes to elect a leader or a coordinator. It can be necessary to determine a new leader
if the current one fails to respond. Provided that all processes have a unique identification number, leader
election can be reduced to finding the non crashed process with the highest identifier. Garcia-Molina's Bully
Algorithm is a classic solution to leader election in synchronous systems with crash failures. In this paper, we
will presented an efficient version of bully algorithm to minimize the redundancy in electing the coordinator, to
reduce the recovery problem of a crashed process in distributed systems and thus to maximize the effectiveness
of traditional bully algorithm.

Keywords: Election Administration , Bully Algorithm, Election, Coordinator, Process Number, Turnaround Time, Election
Message, Ok Message, Coordinator Message, Query Message, Answer Message passing.

International Journal of Electrical, Electronics
and Computer Engineering 1(2): 1-6(2012)

I

J E
E

CE
ISSN No. (Online) : 2277-2626

2 Gandhi and Thakur

B. Limitation of Bully Algorithm

Bully algorithm has following limitations :

1. Network Traffic. The main limitation of bully
algorithm is the highest number of message passing
during the election and it has order O(n2) which
increases the network traffic [9, 7, 6]. When any
process that notices coordinator is down then holds
a new election. As a result, there may n number of
elections can be occurred in the system at a same
time which imposes heavy network traffic.

2. No guarantee on message delivery. This algorithm
is not guaranteed to meet the safety condition El if
processes that have crashed are replaced by
processes with the same number. A process that
replaces a crashed process p may decide that it has
the highest number just as another process (which
has detected p’s crash) has decided that it has the
highest number. Two processes will announce
themselves as the coordinator concurrently.
Unfortunately, there are no guarantees on message
delivery order, and the recipients of these messages
may reach different conclusions on which is the
coordinator process [10].

3. Redundant Election. If the coordinator is running
unusually slowly (say system is not working
properly for some reasons) or the link between a
process and a coordinator is broken for some
reasons, any other process may fail to detect the
coordinator and initiates an election. But the
coordinator is up, so in this case it is a redundant
election.

Again, if a process p with lower process numbers a
coordinator itself. If any process with the highest
priority number is up, it will run the algorithm again
than the current coordinator, crashes and recovers
again, it will initiate an election where the current
coordinator will win again. This is also a redundant
election.

4. Failure detector is unreliable. Condition El may be
broken if the assumed timeout values turn out to be
accurate - that is, if the processes' failure detector is
unreliable [10]. Taking the example just given,
suppose that process 5 either had not failed bit
running unusually slowly (that is, the assumption
that the system is synchronous incorrect) or that
process 5 had failed but is then replaced. Just as
process 4 sends its coordinator message, process 5
(or its replacement) does the same. Process 4
receives process 5’s coordinator message after it
sent its own and so sets elected 4 = process 5. Due
to variable message transmission delays, process 3
receives process 4’s coordinator message after

process 5's and so eventually elected 3 = process 4.
Condition El has been broken.

5. Other drawbacks. From the above example, we can
find out some other drawbacks :

(i) When process 5 recovers from failure, it becomes
new coordinator whereas process 6 with the highest
process number is still alive. This is a violation of
the assumption.

(ii) At the time, when process 4 is coordinator, process
1 recovers from failure and it initiates an election.
Then process 4 becomes coordinator again. This
election is redundant

(iii) When process 2 notices the failure of the coordinator
process 6, it sends election messages to processes
3, 4, 5 and 6. In reply of the election messages, it
gets ok messages from processes alive among
processes 3, 4, 5 and 6. Process 2 can elect the
coordinator itself instead of holding elections by
processes 3, 4 and 5. These elections are also
redundant [4, 5].

III. METHODOLOGY OF OUR PROPOSED
WORK

Our purposed work is based on Election Administration
approach. It is an election administrative body well-known
to deal with leader election mechanism in a distributed
computing system. The Election Administration works as
following :

1. Election Administration (EA)

Election Administration made up with group of special
processes in distributed system. It is certified to handle the
whole election process. It defines the rules and regulations
for attending in an election process in a distributed
computing system. It has one Chief Election Admin (CEC)
and four Election Admins. If any of the Admins failed,
Election Administration EA will recover that Admins without
delay and other processes do not have concern of that. An
Election Administration has a unique group ID. Other
processes in the system communicate with Election
Administration using this group ID. As a result, if any of
the commissioners is down, there will be not any problem
in election. It has a reliable failure detector (FD). If maximum
message transmission delay is Tmsg and maximum message
processing delay is Tpos then maximum time required to get
a reply after sending a message to any process from Election
Administration is T = 2Tmsg + Tpos. If Election Administration
does not get any reply from a process within T time, then
FD of Election Administration will report that requested
process is down. As like as FD, Election Administration has
another component named helper (HP), the function of HP
is to find out the process with the highest process number

Gandhi and Thakur 3

using sending alive message. It knows process number of
all processes of the system. Fig. 3 represents the architecture
of an EA.

Fig. 1. Architecture of Election Administration (EA).

2. Chief Election Admin

Chief Election Admin is the principal of Election
Administration EA. The process with the highest priority in
Election Administration group will be the Chief Election
Admin. It controls other Election Admins and handles FD
and HP.

3. Election Admin

Election Admin is a member of Election Administration. It is
a special kind of process. Any Election Administration in a
distributed system will have a few numbers of Election
Admins (say three or four). All of them consult with the
Chief Election Admin under the rules and regulation while
there will be a need of an election

As the system is synchronous and Election Administration
has a failure detector FD and helper HP to solve limitations
which is mentioned in section 2, we have proposed a
modified version of bully algorithm using Election
Administration concept. This algorithm not only reduces
redundant elections but also reduces message passing
between processes and hence traffic in network will be
decreased dramatically.

A. Algorithm

Our proposed algorithm has the flowing steps :

Step 1 : When process Pi notices that the coordinator
process Pj is down [5], it sends an election message to
Election Administration EA.

Step 2 : Failure detector FD of Election Administration EA
verifies election message sent by Pi. If the sending notice
of Pi is not correct, then Election Administration EA will
send a coordinator message to Pi with process number Pn
of the current coordinator.

Step 3 : If the sending notice of Pi is correct and if the
highest process number is Pi, then Election Administration
EA will send a coordinator message to all processes with
process number Pn of Pi as a new coordinator. If the highest

process number is not Pi, Election Administration EA will
simply find out the alive process with the highest process
number using helper HP and sends a coordinator message
to all processes with the process number Pn of that process
as a new coordinator.

Step 4 : If any process Pn including last crashed coordinator
Pj is up, it will send a Query message to the Election
Administration EA. If the process number Pn of the newly
entranced process is higher than the process number of the
current coordinator Pj, Election Administration EA will send
a coordinator message to all processes having the process
number Pn of new coordinator. It not, Election Administration
will simply send a coordinator message to newly entranced
process having process number of the current coordinator.

Step 5 : If more than one process sends coordinator message
to Election Administration EA at the same time, then Election
Administration EA will consider the process with higher
process number Pn which ensure less message passing to
find out the highest process number using helper Hp.

B. Procedure

The step by step Election procedure of our proposed
algorithm represents in Fig. 2(a), 2(b), 2(c), 2(d).

Step 1 : The system consists of six processes with process
number 1 to 6. Current coordinator is the process 6. But it
has just crashed and process 2 first notices this. So it sends
an election message to the EA in Fig. 2(a).

Fig. 2(a). Process 2 detects current coordinator is down and sends

an election message to EA.

Step 2 : EA ends verify message to the current coordinator
to be sure about the election message sent by process 2.
After verification as shown in Fig. 2(b).

Fig. 2(b).

4 Gandhi and Thakur

Step 3 : EA sends alive message to process 5 (the next
highest process number) to check either the current highest
process is alive or not. And EA gets a reply message from
EA gets a reply message from 5 as shown in Fig. 2(c).

Fig. 2(c). EA finds the alive process with highest number using

alive message.

Step 4 : EA select 5 as new coordinator and sends
coordinator message to all processes having 5 as a new
coordinator of the system as shown in Fig. 2(d).

2(d). EA sends coordinator message to all process having process

number of currently won.

2. Query after Recovery : Fig. 3 represents the steps when
a crashed process is up :

Step 1 : The last crashed coordinator 6 is up and sends a
query message to EA. As process number of 6 is higher
than the current coordinator of the system as shown in Fig.
3(a).

Fig. 3(a) Last crashed coordinator 6 is up and sends a query

message to the EA.

Step 2 : EA sends coordinator message to all processes
with process number 6 as new coordinator as shown in Fig.
3(b).

3(b) EA selects 6 as new coordinator and sends coordinator

message to all processes.

Step 3 : Process 1 is now just Crashed as shown in Fig.
3(c).

Fig. 3(c) Process 1 is now just Crashed.

Step 4 : Process 1 is just up after crashed, and it sends a
query message to EA. It checks that process number of
newly entranced is lower than the current coordinator as
shown in Fig. 3(d).

Fig. 3(d). Again process 1 is up and sends query message to EA.

Step 5 : EA sends coordinator message to only process 1
having the process number of current coordinator of the
system as shown in Fig. 3(e).

Fig. 3(e). EA sends coordinator message to process 1 having the

current coordinator.

Gandhi and Thakur 5

At any time, if more than one processes notice that
coordinator is down, they will send election message to EA.
After verification, EA will consider election request of the
process having higher process number. In Fig. 6, process 4
and 5 detect that coordinator 6 is down, so 4 and 5 send
election message to EA. After verification, EA only consider
election message of process 5. It ensures less message
passing to find out the highest process number.

Say if EA considers election message of 4, then according
to our algorithm, EA will have to send alive message to 5 to
find higher process number. But if EA considers election
message of 5, it does not need to send alive message
because, 5 is already the higher process number and EA can
select 5 as new coordinator. This was EA can ensure less
message passing.

IV. COMPARISON AND DISCUSSION

In this section, we present the comparison in different issues
among our proposed algorithm, original bully algorithm. We
consider message passing complexity and redundant election
both of which increase network traffic.

1. Message passing. If there are n processes in the
system and p is the process number which detects
failure of coordinator, then :

(a) In original bully algorithm, there will be needed of
message passing between processes. In the worst
case, if process with the lowest process number
detects coordinator as failed, then it requires message
passing. In the best, case when p is the highest
process number, it requires messages.

(b) For the case of modified bully algorithm there will
be need of or messages passing between processes.
In worst case that is the process with lowest process
number detects coordinator as failed, it requires
3n – 1 messages passing. In best case when p is
the highest process number, it requires (n – p) + n
messages.

(c) For the case of modified bully algorithm there will
be need of or O(n) message passing between
processes. In worst case that is the process with
lowest process number detects coordinator as failed,
it requires 3n – 1 message passing. In best case
when p is the highest process number, it requires
(n – p) + n messages.

 For the case of our proposed algorithm there will be
need of 1 election message to inform EA, 2 verify
message to ensure the failure of coordinator, and
say r is the highest alive process then alive and
reply message to find out the highest alive process
and so total or O(n) message passing between
processes.

Fig. 4. More than one election Message to EA.

If the process with lowest process number detects
coordinator as failed it will not change total message. In
worst case it may happen that our algorithm needs to check
up process to pn + 1 to find out highest alive process.
Only at that case it requires message passing between
processes.

However, in best case, our algorithm may find the highest
alive process with only one alive and one reply message
that is highest alive process in the system is process with
process number n – 1. In that case, our algorithm requires
only 1+ 2 + 2 + n messages. When p is the highest process
number, it requires only 1 + 2 + n messages.

(d) If a process crashes and recovers again, it sends a
query message to all processes higher than that
process to know the current coordinator which
requires 2*(n – p) message passing. But in our
algorithm, any process after recovery will only send
query message to EA and EA will send a coordinator
message having process number of current
coordinator which requires only 2 messages passing.

2. Redundant election

(a) In original bully algorithm and modified bully
algorithm , if coordinator is running unusually slowly
say (system is not working properly for some
reasons) or the link between a process and
coordinator is broken for some reasons, there will
be redundant election, although current coordinator
is up. But in our algorithm, as EA verifies either
current coordinator is really up or down when EA
receives any election message from any process, it
ensures that there will be no redundant election in
the system.

(b) If a process p crashes and recovers again, it initiates
an election where the current coordinator wins again
which is redundant election. But in our algorithm,
after recovery, any process will send query message
to EA and EA will reply with coordinator message
having process number with current coordinator
which reduces unnecessary election.

6 Gandhi and Thakur

3. Multiple Coordinators. As there is no guarantee on
message delivery that may happen more than one
coordinator exist in the system at a time in bully algorithm
and modified bully algorithm. But in our algorithm there is
no possibility of this as EA handles whole election process.

V. CONCLUSION

In this work, we modified bully algorithm using a new
concept Election Administration (EA). We tried to overcome
limitations of original bully algorithm and modified bully
algorithm. Our comparison and discussion section prove that
our algorithm is more efficient than bully algorithm and
modified bully algorithm in respect of message passing,
redundant election and network traffic.

REFERENCES
[1] Coulouris, G., Dollimore, J., Kindberg, T.,"Distributed Systems

Concepts and Design", Pearson Education, pp. 431-436
(2003).

[2] Tanenbaum A.S, "Distributed Operating System, Pearson
Education", (2007).

[3] Sinha P.K, Distributed Operating Systems Concepts and
Design, Prentice-Hall of India private Limited, (2008).

[4] H. Garcia-Molina, "Elections in Distributed Computing
System", IEEE Transaction Computer, Vol. C-31, pp.48-
59, Jan. (1982).

[5] Kshemkalyani A.D. and Singhal M., "Distributed Computing
principles Algorithms, and Systems", Cambridge University
Press, (1987).

[6] Quazi Ehsanul Kabir Mamun, Salahuddin Mohammad
Masum,Mohammad Abdur Rahim Mustafa, "Modified Bully
Algorithm for Electing Coordinator in Distributed System",
3rd WSEAS international conference on Software
Engineering, Parallel Distributed Systems (SEPADS) February
13-15 (2004), Salzburg, Austria.

[7] M.S. Kordafshari, M. Gholipour, M.Jahanshahi, A.T.
Haghighat,"Modified bully election algorithm in distributed
system", WSEAS Conferences, Cancun, Mexico, May 11-
14, (2005).

[8] A new approach for election algorithm in distributed systemc.
Second International Conference on Communication Theory,
Reliability, and Quality of Service (2009).

[9] Thakur P. Kumar , Kumar Ram, Ali Ruhi and Malviya
Rajendra, "A New Approach of Bully Election Algorithm
for Distributed Computing", Int. J. of Electrical, Electronics
and Computer Engineering (IJEECE) Vol 1(1): 72-79(2011).

[10] Deepali P. Gawali, "Leader Election Problem in Distributed
Algorithm", IJCST Vol. 3, Iss ue 1, Jan. - March (2012).

